If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-9/(2x^2))+9=0
Domain of the equation: 2x^2)!=0We get rid of parentheses
x!=0/1
x!=0
x∈R
-9/2x^2+9=0
We multiply all the terms by the denominator
9*2x^2-9=0
Wy multiply elements
18x^2-9=0
a = 18; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·18·(-9)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{2}}{2*18}=\frac{0-18\sqrt{2}}{36} =-\frac{18\sqrt{2}}{36} =-\frac{\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{2}}{2*18}=\frac{0+18\sqrt{2}}{36} =\frac{18\sqrt{2}}{36} =\frac{\sqrt{2}}{2} $
| 5/3(2y-1)=(3y-5) | | (a+19)100=100 | | 1.8=76-0.1y | | 4x+2=2x-2+(4x-2) | | 3x=0.3=7.8 | | 19a(19+19)=19 | | 4x+6/3=8 | | 10(10a+10)=10 | | 9(10+z)=9 | | 10c+9=99 | | 4x+2=2x-2+4x-2 | | 10a+9=9 | | 25c+10=0 | | 5k-2=6k+5 | | 5p-7=10 | | 4935x=168 | | 4935x=42 | | 2x+x+x+9=x2x+12 | | 2x-95+x=90 | | 5x-9/2=12 | | 3x+2=4+x+2 | | 6m+7=144 | | 8(a)+5=5(-13) | | .5x+25=215 | | 28x-1=26x+3 | | h^2+1.5h-280=0 | | 5(9-x)/4=x | | 2x+8=6+2x | | 3/4x+3/8=12 | | 12x+21(2-x)=44 | | 34x+23=98 | | 5(7n+7)-5n=35-n |